A paper accepted to ICASSP2023

A paper accepted to ICASSP2023

Created
February 22, 2023
Tags
PaperComputer Vision
Updated
February 22, 2023

We are pleased to announce that our paper “Deep quantigraphic image enhancement via comparametric equations” has been accepted to ICASSP2023.

Most recent methods of deep image enhancement can be generally classified into two types:

  • Decompose and enhance
  • Illumination estimation centric

The former is usually less efficient, and the latter is constrained by a strong assumption regarding image reflectance as the desired enhancement result.

To alleviate this constraint while retaining high efficiency, we propose a novel trainable module that diversifies the conversion from the low-light image and illumination map to the enhanced image. It formulates image enhancement as a comparametric equation parameterized by a camera response function and an exposure compensation ratio. By incorporating this module in an illumination estimation-centric DNN, our method improves the flexibility of deep image enhancement, limits the computational burden to illumination estimation, and allows for fully unsupervised learning adaptable to the diverse demands of different tasks.

Details will be disclosed later.